On Lacunary trigonometric series, II
نویسندگان
چکیده
منابع مشابه
Lacunary Trigonometric Series. Ii
where E c [0, 1] is any given set o f positive measure and {ak} any given sequence of real numbers. This theorem was first proved by R. Salem and A. Zygmund in case of a -0, where {flk} satisfies the so-called Hadamard's gap condition (cf. [4], (5.5), pp. 264-268). In that case they also remarked that under the hypothesis (1.2) the condition (1.3) is necessary for the validity of (1.5) (cf. [4]...
متن کاملOn Lacunary Trigonometric Series.
1. Fundamental theorem. In a recent paper f I have proved the theorem that if a lacunary trigonometric series CO (1) X(a* cos nk6 + bk sin nk9) (nk+x/nk > q > 1, 0 ^ 0 ^ 2ir) 4-1 has its partial sums uniformly bounded on a set of 0 of positive measure, then the series (2) ¿(a*2 + bk2) k-l converges. The proof was based on the following lemma (which was not stated explicitly but is contained in ...
متن کاملNo. 7] 5d~ 10. on Lacunary Trigonometric Series
x (1.2) lim I {t; t e E, SN(t) < xAN} / I E _ (2~r)-1/2 exp( u2/2)du. *' Recently, it is proved that the lacunarity condition (1.1) can be relaxed in some cases (c.f. [1] and [4]). But in [1] it is pointed out that to every constant c>0, there exists a sequence {nk} for which nk+l > nk(1 + ck--1(2) but (1.2) is not true for ak =1 and E_ [0, 11. The purpose of the present note is to prove the fo...
متن کاملA Lower Bound in the Tail Law of the Iterated Logarithm for Lacunary Trigonometric Series
The law of the iterated logarithm (LIL) first arose in the work of Khintchine [5] who sought to obtain the exact rate of convergence in Borel’s theorem on normal numbers. This result was generalized by Kolmogorov [6] to sums of independent random variables. Recall that an increasing sequence of positive numbers {nk} is said to satisfy the Hadamard gap condition if there exists a q > 1 such that...
متن کاملOn lacunary series with random gaps
We prove Strassen’s law of the iterated logarithm for sums ∑N k=1 f(nkx), where f is a smooth periodic function on the real line and (nk)k≥1 is an increasing random sequence. Our results show that classical results of the theory of lacunary series remain valid for sequences with random gaps, even in the nonharmonic case and if the Hadamard gap condition fails.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1968
ISSN: 0386-2194
DOI: 10.3792/pja/1195521026